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Abstract

A Fourier space formalism based on the shape amplitude of a particle is used to compute the demagnetization tensor

field for uniformly magnetized particles of arbitrary shape. We provide a list of explicit shape amplitudes for important

particle shapes, among others: the sphere, the cylindrical tube, an arbitrary polyhedral shape, a truncated paraboloid,

and a cone truncated by a spherical cap. In Part I of this two-part paper, an analytical representation of the

demagnetization tensor field for particles with cylindrical symmetry is provided, as well as expressions for the

magnetostatic energy and the volumetric demagnetization factors.

r 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The computation of demagnetization factors (either volumetric, ballistic, or point function) is an old and
difficult problem, with the earliest work going back to the 19th century. All demagnetization factors can be
derived from the demagnetization point function or demagnetization tensor field (DTF), so that this tensor
field, represented by the symmetric second-rank tensor NijðrÞ; is the central quantity to be determined. The
DTF describes how the magnetic field,HðrÞ; depends on location for a uniformly magnetized particle with a
given shape. It is well known that for the ellipsoid, the DTF is constant inside the body, so that this shape is
particularly useful for experimental measurements in a uniform applied field. For other shapes, the DTF
depends on position inside the body, so that the interpretation of experiments becomes much more
complicated [1].
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Recently, we proposed [2] a new method for the computation (analytical or numerical) of the DTF for a
uniformly magnetized particle with an arbitrary shape. The mathematical details of this model are
summarized in Section 2. The method expresses all magnetostatic quantities in Fourier space, and employs
the concept of the shape amplitude, DðkÞ; which is the Fourier transform of the characteristic (or shape)
function, DðrÞ: The shape function is constant and equal to 1 inside the particle, and vanishes everywhere
outside the particle. In Ref. [2], the model was applied to the derivation of the DTF for a uniformly
magnetized sphere, a well-known result, and also to the DTF of a uniformly magnetized tetrahedron. In the
present two-part paper, we present additional applications of the Fourier space formalism for the
computation of the DTF. In this paper, Part I, we focus our attention on analytical computations, whereas
the companion paper, Part II [3], deals with several numerical methods.

The central function in the Fourier space description of the DTF is the shape amplitude DðkÞ: Because of
its importance, we provide a number of explicit expressions for the shape amplitude in Section 3. The list
includes: the sphere, the cylindrical tube, an arbitrary polyhedral shape (with a rectangular prism, the
tetrahedron, and a hexagonal plate as examples), the truncated paraboloid, and a cone with a spherical cap.
This list should serve as a guideline for the computation of the shape amplitude for other, more complex
particle shapes. In Section 4, we describe first the general theory for the DTF of an object with cylindrical
symmetry (4.1), followed by the explicit analytical computation of the DTF for the cylinder (4.2). In Section
5, we compute the magnetostatic energy of the uniformly magnetized cylinder with arbitrary aspect ratio,
followed in Section 6 by the computation of the magnetometric (volume-averaged) demagnetization factors
for the cylinder. We conclude this paper with a number of applications of the model (Section 7) for the
computation of the field at particular locations in space around a solenoid.
2. Summary of the theoretical model

In this section, we will repeat briefly the most important conclusions of Ref. [2]. Consider a uniformly
magnetized particle with characteristic function (or shape function) DðrÞ and magnetization MðrÞ ¼
M0 #mDðrÞ; where the hat indicates a unit vector and M0 is the saturation magnetization. Using a Fourier
space formalism, it can be shown that the magnetic induction, B; inside and around the particle is given by

B ¼ m0ðMþHÞ ¼ m0M�
B0

8p3

Z
d3k

DðkÞ
k2

kð #m � kÞeik�r; ð1Þ

where the shape amplitude DðkÞ is equal to the Fourier transform of DðrÞ; and B0 ¼ m0M0: The
demagnetization field H is therefore defined as

H ¼ �
M0

8p3

Z
d3k

DðkÞ
k2

kð #m � kÞeik�r; ð2Þ

If we define the demagnetization tensor Nij by the following relation:

Bi ¼ m0ðMi � NijMjÞ; ð3Þ

then we find an explicit expression for the tensor by comparison with Eq. (1):

NijðrÞ �
1

8p3

Z
d3k

DðkÞ
k2

kikje
ik�r; ð4Þ

or, in Fourier space:

NijðkÞ ¼
DðkÞ

k2
kikj : ð5Þ
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This definition of the demagnetization tensor automatically satisfies the condition that the trace of Nij must
be equal to unity inside the particle, and vanish outside. In other words, the trace of the demagnetization
tensor field is equal to the shape function, or

Tr½NijðrÞ	 ¼ DðrÞ; ð6Þ

as shown explicitly in Eq. (7) of Ref. [2]. Furthermore, the shape amplitude can be used to
derive expressions for the demagnetization energy, Em; and the average demagnetization tensor
inside the particle:

Em ¼
m0M2

0

16p3

Z
d3k

7DðkÞ72

k2
ð #m � kÞ2; ð7Þ

/NSij ¼
1

8p3V

Z
d3k

7DðkÞ72

k2
kikj : ð8Þ

The shape amplitude of a particle without inversion symmetry is a complex quantity, hence the modulus-
squared in both of the above integrals.

In Ref. [2], we have applied Eqs. (4), (7), and (8) to the simple case of the uniformly magnetized
sphere, for which these results are well known. In the present paper, we will exploit these same
expressions for the analytical computation of NijðrÞ; Em; and /NSij for the finite cylinder. We will also
show how a large class of particle shapes with cylindrical symmetry can be dealt with. While the standard
analytical computation of Nij requires two volume integrations (6 integrals) within the Fourier space
formalism (essentially two 3D Fourier transforms), it is possible to formally integrate four of those integrals
for a general object with cylindrical symmetry. This will be done in Section 4.1. Then we apply the general
equation to the special case of the finite cylinder and explicitly obtain expressions for all three quantities
mentioned above. We begin this paper with a list of shape amplitude functions for important particle
shapes.
3. Shape amplitudes for important particle shapes

Since the shape amplitude DðkÞ is the central function for the determination of demagnetization factors
and magnetostatic energies, it is useful to list here explicit shape amplitudes for a number of important
shapes. Unless mentioned otherwise, the coordinate origin is at the center of the particle. Cartesian
coordinates are labeled ðkx; ky; kzÞ; cylindrical coordinates ðk>; y; kzÞ; and spherical coordinates ðk; y;jÞ:

* Sphere: For a sphere of radius R and volume V ¼ 4p
3

R3 (Fig. 1a), the shape amplitude is given
by [4]:

DðkÞ ¼
3V

kR
j1ðkRÞ; ð9Þ

with j1ðxÞ the spherical Bessel function of the first kind.
* Cylindrical tube: For a tube with inner radius R1; outer radius R2; height 2d; and volume V ¼

2dpðR2
2 � R2

1Þ (Fig. 1b), the shape amplitude is

DðkÞ ¼
2VsincðdkzÞ
k>ðR2

2 � R2
1Þ

R2J1ðk>R2Þ � R1J1ðk>R1Þ½ 	; ð10Þ

with J1ðxÞ the Bessel function of the first kind, and sincðxÞ � sinðxÞ=x: A more general expression for
particle shapes of arbitrary cylindrical symmetry is given in Section 4.1.
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Fig. 1. Schematic representation of the various particle shapes used in Section 3 to derive analytical expressions for the shape

amplitude DðKÞ:
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* General polyhedral shape: The general expression of the shape amplitude for an arbitrary polyhedral
particle was derived by Komrska [5].

DðkÞ ¼ �
1

k2

XF

f¼1

k � nf

k2 � ðk � nf Þ
2

XEf

e¼1

Lfek � nfesinc
Lfe

2
k � tfe

� �
e�ik�nC

fe : ð11Þ

This equation is only valid if the second denominator is non-zero. If k ¼ 7knf (in other words, if k is
parallel to any one of the face normals), then the contribution of that particular face (or faces) must be
replaced by

Df ðkÞ ¼ i
k � nf

k2
Pf e

�idf k�nf ; ð12Þ

where Pf is the surface area of the face f ; and df the distance between the origin and the face f : In the
origin of Fourier space, the shape amplitude is equal to the particle volume, i.e. Dð0Þ ¼ V : The symbols
in Eq. (11) are illustrated in Fig. 1f and defined as: nC

fe; coordinate vectors of the center of the edge e of
face f ; nf ; unit outward normal to face f ; Lfe; length of the eth edge of the f th face; tfe; unit vector along
the eth edge of the f th face, defined by

tfe ¼
nf 
Nfe

7nf 
Nfe7
;

where Nfe is the unit outward normal on the face which has the edge e in common with the face f ; nfe;
unit outward normal in the face f on the edge e defined by nfe ¼ tfe 
 nf :
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The input parameters needed to complete this computation for an arbitrary polyhedron are the Nv

vertex coordinates nv and a list of which vertices make up each face (counterclockwise when looking
towards the polyhedron center). All other quantities can be computed from these parameters. The
following three shape amplitudes are derived by means of the general shape amplitude for a polyhedral
particle.

* Rectangular prism: for a rectangular prism with dimensions 2a; 2b; 2c; and volume V ¼ 8abc (Fig. 1c),
we have (oriented with edges parallel to cartesian coordinate axes)

DðkÞ ¼ VsincðakxÞsincðbkyÞsincðckzÞ: ð13Þ

* Regular tetrahedron: for a regular tetrahedron with edge length L and volume V (Fig. 1d), the shape
amplitude is given by [6]:

DðkÞ ¼ �6iV Eða; a; aÞ þ Eða;�a;�aÞ þ Eð�a; a;�aÞ þ Eð�a;�a; aÞ½ 	; ð14Þ

with a ¼ L=
ffiffiffi
2

p
; and

Eða; b; gÞ �
e�i=2ðakxþbkyþgkzÞ

ðakx þ bkyÞðakx þ gkzÞðbky þ gkzÞ
: ð15Þ

The lack of an inversion center causes the shape amplitude to be a complex quantity.
* Regular hexagonal plate: The shape amplitude of a regular hexagonal plate can be computed analytically,

starting from Eq. (6) in Ref. [7], or, alternatively, by application of a six-fold rotation operation to the
shape amplitude of a 60

�
isosceless triangular plate, as described in Ref. [7]. The resulting expression for

a plate with thickness 2c and edge length 2a (Fig. 1e) is given by:

DðkÞ ¼
2V

3

sincðckzÞ
k2

x þ k2
y

k2
ysincðakxÞsincð2adkyÞ

"

þ
X2
j¼1

pjdkx þ
1

2
ky

� �2

sinc½a �
pj

2
kx þ dky

� 	
	sinc½2adðpjdkx þ

1

2
kyÞ	

#
; ð16Þ

where Z � c=a; d �
ffiffiffi
3

p
=2; and pj � fþ1;�1g: The volume is equal to V ¼ 24da2c: When k2

x þ k2
y ¼ 0;

the shape amplitude is given by

Dð0; 0; kzÞ ¼ VsincðckzÞ: ð17Þ

This last expression is valid for all plate-like shapes with major surfaces normal to the z-direction.
* Truncated paraboloid: Consider a paraboloid oriented along the z-axis of a cartesian reference frame.

The top of the paraboloid is in the origin, and the height is equal to h ¼ aR2; with R the radius of the
circle in the truncation plane (Fig. 1g). The shape amplitude (in cylindrical coordinates) consists of two
terms:

DðkÞ ¼
2piR
k>kz

e�ihkz J1ðk>RÞ �
2pi
kz

Z R

0

J0ðk>rÞre�ikzr2a dr: ð18Þ

The radial integral can be solved by means of the following standard integral [8]:Z 1

0

dr rei=2ur2J0ðvxÞ ¼
1

2
Lðu; vÞ þ iMðu; vÞ½ 	; ð19Þ

where Lðu; vÞ and Mðu; vÞ can be expressed in terms of the Lommel functions of two variables:

u

2
Lðu; vÞ ¼ sin

v2

2u
þ V0ðu; vÞsin

u

2
� V1ðu; vÞcos

u

2
ðu > vÞ; ð20Þ
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¼ U1ðu; vÞcos
u

2
þ U2ðu; vÞsin

u

2
ðuovÞ; ð21Þ

u

2
Mðu; vÞ ¼ cos

v2

2u
þ V0ðu; vÞcos

u

2
� V1ðu; vÞsin

u

2
ðu > vÞ; ð22Þ

¼ U1ðu; vÞsin
u

2
� U2ðu; vÞcos

u

2
ðuovÞ; ð23Þ

with

Unðu; vÞ �
XN
k¼0

ð�1Þk
u

v

� 	2kþn
J2kþnðvÞ; ð24Þ

Vnðu; vÞ �
XN
k¼0

ð�1Þk
v

u

� 	2kþn
J2kþnðvÞ: ð25Þ

Introducing dimensionless variables Kz � hkz and K> � Rk> we find for the shape amplitude of the
truncated paraboloid:

DðK>;KzÞ ¼
4V i

Kz

e�iKz
J1ðK>Þ

K>
�

1

2
½Lð2Kz;K>Þ � iMð2Kz;K>Þ	

� �
; ð26Þ

where V ¼ p=2hR2 is the volume of the truncated paraboloid. The limiting cases for Kz-0
and K>-0 can be computed easily by using only the lowest order terms of Eqs. (24) and (25).
We find:

DðK>; 0Þ ¼
4V

K>
J1ðK>Þ �

2

K>
J2ðK>Þ

� �
; ð27Þ

Dð0;KzÞ ¼
2V i

Kz

e�iKz þ
i

2Kz

ð1þ eiKz Þ
� �

; ð28Þ

Dð0; 0Þ ¼ V : ð29Þ

* Cone truncated by spherical cap: The shape amplitude for a cone with opening angle a; truncated by a
spherical cap of radius R (Fig. 1h) is given by (in spherical coordinates):

DðkÞ ¼ 2p
XN
l¼0

ð�iÞl Pl�1ðcos aÞ � Plþ1ðcos aÞ½ 	Plðcos yÞklðk;RÞ; ð30Þ

with PlðxÞ the a Legendre polynomial, and

klðk;RÞ �
Z R

0

dr r2jlðkrÞ:

This radial integral can be rewritten as

klðk;RÞ ¼

ffiffiffi
p
2

r
1

k3

Z kR

0

dx x
3
2J

lþ1
2
ðxÞ:

Using the relations

jl�1ðxÞ þ jlþ1ðxÞ ¼
2l þ 1

x
jlðxÞ
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and Z
dx xlJnðxÞ ¼ xlJnþ1ðxÞ � ðl� n� 1Þ

Z
dx xl�1Jnþ1ðxÞ

we can derive the following recursion relation:

klþ2ðk;RÞ ¼
l þ 3

l
klðk;RÞ �

2l þ 3

l

ffiffiffi
p
2

r
R

k

� �3=2

J
lþ3

2
ðkRÞ ð31Þ

This recursion relation can be started if the integrals kqðk;RÞ with q ¼ 0;y; 2 are known. They can be
derived from equations [1.8.1.6] and [1.8.1.8] in Ref. [9]:

k0ðk;RÞ ¼
1

k3
sinðkRÞ � kRcosðkRÞ½ 	; ð32Þ

k1ðk;RÞ ¼
1

k3
2� 2cosðkRÞ � kRsinðkRÞ½ 	; ð33Þ

k2ðk;RÞ ¼
1

k3
kRcosðkRÞ � 4sinðkRÞ þ 3 siðkRÞ þ

p
2

� 	h i
; ð34Þ

with siðxÞ ¼
R x

0 ðsin t=tÞdt the sine integral.

This concludes the enumeration of shape amplitudes for a series of important particle shapes. In the
following section, we will first derive a general expression for shapes of cylindrical symmetry, and then
apply the formalism to the uniformly magnetized cylinder.
4. The demagnetization tensor field for objects with cylindrical symmetry

4.1. General theory

Consider a general object with cylindrical symmetry, as shown in Fig. 2. The top and bottom surfaces are
assumed to be flat at z ¼ h1 and h2: The object has an external surface described by r ¼ r2ðzÞ; and an
z

x

y

r2(z)

r1(z)
h1

h2

Fig. 2. Schematic representation of a general object of revolution with distinct inner and outer surfaces rsðzÞ and r2ðzÞ:
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internal surface at r ¼ r1ðzÞ: It is possible for r1ðhiÞ to be equal to r2ðhiÞ for one or both points. Both
functions riðzÞ are assumed to be single valued functions. The demagnetization tensor for such an object can
be expressed by first determining the shape amplitude DðkÞ; which, in cylindrical coordinates with k ¼
ðk>; y; kzÞ and r ¼ ðr; y0; zÞ; is given by:

DðkÞ ¼
Z h2

h1

dz e�izkz

Z r2ðzÞ

r1ðzÞ
dr r

Z 2p

0

dy e�ik>rcosðy�y0Þ;

¼ 2p
Z h2

h1

dz e�izkz

Z r2ðzÞ

r1ðzÞ
dr rJ0ðk>rÞ;

¼
2p
k>

Z h2

h1

dz f ðk>; zÞe�izkz ; ð35Þ

with

f ðk>; zÞ � r2ðzÞJ1ðk>r2ðzÞÞ � r1ðzÞJ1ðk>r1ðzÞÞ: ð36Þ

The demagnetization tensor for this class of objects can be obtained by inserting the integral (35) into
Eq. (4), expressed in cylindrical coordinates. The resulting four-fold integral is given by

Nijðr; y
0; z0Þ ¼

1

4p2

Z h2

h1

dz

Z
N

0

dk>f ðk>; zÞ
Z 2p

0

dy eik>rcosðy�y0Þ
Z þN

�N

dkz

kikje
�iðz�z0Þkz

k2
> þ k2

z

: ð37Þ

Inserting the Cartesian components of k ¼ ðk>cos y0; k>sin y0; kzÞ; and using the following standard
integrals:Z p

0

eibcos xcosðnxÞdx ¼ inpJnðbÞ ½3:915:2	; ð38Þ

Z p

0

eibcos xsin2nðxÞdx ¼
ffiffiffi
p

p 2

b

� �n

Gðnþ
1

2
ÞJnðbÞ ½3:915:5	; ð39Þ

Z p

0

ezcos xdx ¼ pI0ðzÞ ½3:3396	; ð40Þ

where the numbers between square brackets refer to Ref. [10], the 6 independent components of the tensor
Nij can be written as:

N11

N22

N33

N12

N13

N23

0
BBBBBBBBB@

1
CCCCCCCCCA
ðr; y0; z0Þ ¼

1

4p

Z h2

h1

dz

Z
N

0

dk>f ðk>; zÞ

k2
> J0ðk>rÞ � cos 2y0J2ðk>rÞ
� �

k2
> J0ðk>rÞ þ cos 2y0J2ðk>rÞ
� �

2J0ðk>rÞ

�
1

2
k2
>sin 2y0J2ðk>rÞ

2ik>cos y0J1ðk>rÞ

2ik>sin y0J1ðk>rÞ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

Z þN

�N

dkz

1

1

k2
z

1

kz

kz

0
BBBBBBBBB@

1
CCCCCCCCCA
e�iðz�z0Þkz

k2
> þ k2

z

:

ð41Þ

The integral over kz can be solved using the standard integrals ½3:723:2	; ½3:723:3	; and ½3:738:2	 in Ref. [10]
and the demagnetization tensor is written as

Nijðr; y
0; z0Þ ¼

Z
N

0

dk> k>Sijðk>; r; y0Þ
Z h2

h1

dz f ðk>; zÞxð7Þ
ij e7ðz0�zÞk> ; ð42Þ
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where

Sijðk>; r; y0Þ �
X2
m¼0

aðmÞij Jmðk>rÞ; ð43Þ

and the matrices aðmÞij and xð7Þ
ij are defined as

að0Þij �
1

4

1 0 0

0 1 0

0 0 2

0
B@

1
CA; að1Þij �

1

2

0 0 cos y0

0 0 sin y0

cos y0 sin y0 0

0
B@

1
CA

að2Þij �
1

8

�2cos 2y0 sin 2y0 0

sin 2y0 2cos 2y0 0

0 0 0

0
B@

1
CA; xð7Þ

ij �

1 �1 71

�1 1 71

71 71 �1

0
B@

1
CA

The top sign in Eq. (42) is used when z � z0 > 0; the bottom sign when z � z0o0:
The main advantage of expression (42) is that there remain only 2 integrations compared to the 6

integrations needed to go from DðrÞ to NijðrÞ: In some cases, one of the two integrals can be carried out
analytically, leaving only one integral to be evaluated numerically. In the case of the cylinder, both integrals
can be computed analytically, as shown explicitly in Section 4.2.

4.2. The demagnetization tensor field for the finite cylinder

The radial functions riðzÞ for the cylinder result in the following expression for the function f ðk>; zÞ:

f ðk>; zÞ ¼ RJ1ðk>RÞ; ð44Þ

which does not depend on the coordinate z: If we scale all coordinates by the cylinder radius R (r � r=R;
z � z0=R; t � d=R; and K � kR), then the z-integral can be solved trivially (distinguishing between the
regions z0o� d; �doz0od; and doz0). The resulting expression for the demagnetization tensor is given by

Nijðr; y
0; zÞ ¼

Z
N

0

dK SijðK ; r; y0ÞJ1ðKÞ

2e�zKsinhðtKÞxð�Þ
ij ½toz	

xð�Þ
ij ð1� e�ðtþzÞK Þ þ xðþÞ

ij ð1� e�ðt�zÞK Þ ½�tozot	

2ezKsinhðtKÞxðþÞ
ij ½zo� t	

8>><
>>: ð45Þ

Next we replace the hyperbolic function by exponential functions, and introduce the following notation:

a� � jz� tj; ð46Þ

aþ � jzþ tj; ð47Þ

and

Htz ¼
1 ift > z

0 iftoz

(
and stz ¼

1 iftoz

�1 ift > z

(

After some elementary manipulations we arrive at

Nijðr; y
0; zÞ ¼ að2Þij sztI2ðr; a�Þ þ I2ðr; aþÞ � 2HtzI2ðr; 0Þ

� �
� að0Þij sztI0ðr; a�Þ þ I0ðr; aþÞ � 2Htzð1� di3dj3ÞI0ðr; 0Þ

� �
� að1Þij s0zðI1ðr; a�Þ � I1ðr; aþÞÞ; ð48Þ
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where dij is the identity matrix and

Imðr; aÞ �
Z

N

0

dK JmðKrÞJ1ðKÞe�aK ; ð49Þ

The integrals Imðr; aÞ in Eq. (49) belong to the large class of Lipschitz–Hankel integrals involving the
products of Bessel functions. There is a long history in the mathematical literature regarding this type of
integral (e.g., [11,12]). We will follow Eason et al. [12] and express the integrals in terms of complete and
incomplete elliptic integrals. To avoid confusion between the various notational schemes in use for elliptic
integrals, we will use the definitions and notations as defined in the Handbook of Mathematical Functions by
Abramowitz and Stegun [13, Chapter 17].

The solutions to the integrals of type (49) for a7a0 are given by [9,12]

Imðr; a7Þ ¼

sr1
1

2
L0ðb7\k7Þ �

k7a7

2pr
1
2

Kðm7Þ þ Hr1 form ¼ 0;

1

pk7
ffiffiffi
r

p fð2� m7ÞKðm7Þ � Eðm7Þg form ¼ 1;

2a7
pk7r3=2

Eðm7Þ �
a7k7ða27 þ r2 þ 2Þ

2pr
5
2

Kðm7Þþ

s1r
1

2r2
L0ðb7\k7Þ þ

H1r

r2
form ¼ 2;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð50Þ

where

b7 ¼ sin�1 a7ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� 1Þ2 þ a27

q
0
B@

1
CA and

m7 ¼ k2
7 ¼ sin2k7 ¼

4r

ðrþ 1Þ2 þ a27
ð51Þ

KðmÞ and EðmÞ are the complete elliptic integrals of the first and second kinds, respectively, and L0ðb\kÞ is
Heuman’s Lambda function, which is defined as

L0ðb\kÞ ¼
2

p
KðmÞEðb\90

�
� kÞ � ½KðmÞ � EðmÞ	F ðb\90

�
� kÞ

�  
; ð52Þ

where m � sin2 k: Eðb\aÞ and F ðb\aÞ are the (incomplete) elliptic integrals of the first and second kinds,
respectively. The solutions to the integrals of type (49) for a7 ¼ 0 are given by [10]

I0ðr; 0Þ ¼ ð1� dr1ÞH1r þ
1

2
dr1; ð53Þ

I2ðr; 0Þ ¼ ð1� dr1Þ
Hr1

r2
þ

1

2
dr1: ð54Þ

The solutions above are in agreement with those reported by Kraus [1] and Chen et al. [14].
We will now consider the eigenvalues and eigenvectors of the demagnetization tensor field. It is

instructive to convert the cartesian tensor elements to their cylindrical equivalents, using the following
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relations:

Nrrðr; zÞ ¼Nxxðr; 0; zÞ;

Nzzðr; zÞ ¼Nzzðr; 0; zÞ;

Nrzðr; zÞ ¼Nxzðr; 0; zÞ: ð55Þ

The component Nyyðr; zÞ follows from the trace condition on the tensor

Nrrðr; zÞ þ Nyyðr; zÞ þ Nzzðr; zÞ ¼ Dðr; zÞ; ð56Þ

where D is the cylinder shape function. The cylindrical symmetry means that there must be at least a Nm

symmetry, i.e., a rotation axis of infinite order along z; with an infinite number of mirror planes containing
the z axis. This in turn means that two of the eigenvectors in any given point r must lie in the plane
containing the z-axis and going through this point. Using the position dependent cylindrical basis vectors
er; ey; and ez; the eigenvectors are then expressed as:

E1 ¼ ðcos Z; 0; sin ZÞ;

E2 ¼ ð0; 1; 0Þ;

E3 ¼ ð�sin Z; 0; cos ZÞ;

where Z is an angle to be determined (depends on r and z). If we represent the eigenvalues by li; then we can
use the spectral decomposition to write down the explicit expression for the Nij-tensor in cylindrical
coordinates in the plane y ¼ 0

Nij ¼

cos Z 0 �sin Z

0 1 0

sin Z 0 cos Z

0
B@

1
CA

l1 0 0

0 l2 0

0 0 l3

0
B@

1
CA

cos Z 0 sin Z

0 1 0

�sin Z 0 cos Z

0
B@

1
CA;

¼

l1cos2 Zþ l3sin
2 Z 0 cos Zsin Zðl1 � l3Þ

0 l2 0

cos Zsin Zðl1 � l3Þ 0 l3cos2 Zþ l1sin
2 Z

0
B@

1
CA:

Since the trace of this matrix must be equal to the shape function, we have l2 ¼ DðrÞ � l1 � l3; there are
hence three unknowns: Zðr; zÞ; l1ðr; zÞ; and l3ðr; zÞ:

It is easy to show that the eigenvalues li and the angle Z can be expressed in terms of the cylindrical
tensor elements, as follows:

l1 ¼
1

2
ðNrr þ NzzÞ þ

Nrz

sin 2Z
;

l3 ¼
1

2
ðNrr þ NzzÞ �

Nrz

sin 2Z
;

Z ¼
1

2
tan�1 2Nrz

Nrr � Nzz

� �
:

If the shape function has an additional mirror plane normal to the z-axis (e.g. cylinder, torus, etc.), then the
Nrz element of the tensor must be an odd function of z: The above equations are valid for any object with
cylindrical symmetry.

The tensor elements are shown as grayscale plots in Fig. 3 for a cylinder with unit aspect ratio: (a)
through (c) correspond to Nrr; Nrz and Nzz; resp.; (d) through (f) represent the eigenvalues l� ¼ minðl1; l3Þ;
lþ ¼ maxðl1; l3Þ; and l2: The largest variations of the eigenvalues occur near the edges and corners, where
the shape function is discontinuous. The eigenvalues and eigenvectors can be used to create a graphical
representation of the demagnetization tensor field NijðrÞ [2]. The tensor is represented by a quadratic surface
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[-0.560, 0.448] [-0.931, 0.931] [-0.453, 0.548]

[-1.044, 0.334] [0.006, 1.063] [0.006, 0.384]

Nrr Nrz Nzz

λ- λ+ λ2

(a) (b)

(d)

(c)

(e) (f)

Fig. 3. Tensor elements for a cylinder with unit aspect ratio: Nrr (a), Nrz (b), and Nzz (c). The corresponding eigenvalues l�; lþ; and l2
are shown in (d) through (f), resp. The numbers near the top of each pattern correspond to the intensity scale: black is equal to the first

number, white equals the second number.

(a)

(b)

(c)

Fig. 4. (a) Three-dimensional perspective representation of the demagnetization tensor field in the plane y ¼ 0 for a cylinder (outlined)

with aspect ratio t ¼ 1: The ellipsoids represent the demagnetization tensor in the interior of the cylinder. Intersections of three rods

correspond to the eigenvectors of the demagnetization tensor outside the cylinder, with the light/dark colored rod being associated with

the negative eigenvalue. When the tensor field is contracted with respect to a magnetization vector, the magnetic field H results. This

can be combined with the magnetization vector to result in a field line plot of the magnetic induction BðrÞ; as shown in (b) for M

parallel to the cylinder axis, and in (c) for M at 15� from the cylinder axis.
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with the eigenvectors along the main axes. For all points inside the cylinder, the eigenvalues are all positive,
so that the resulting shape is an ellipsoid. For all points outside the cylinder, the trace of the tensor vanishes
which means that one or two eigenvalues must be negative. This leads to single-sheet or double-sheet
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hyperboloids, respectively. Fig. 4(a) shows a rendered drawing of the ellipsoids and single-sheet
hyperboloids for a cylinder with unit aspect ratio; only points in the plane y ¼ 0 are shown since all
other planes are identical due to the cylindrical symmetry. The hyperboloids are represented by the
intersection of three rods with the eigenvectors as directions and the eigenvalues as lengths. The negative
eigenvalue is associated with the darker rod. From the ellipsoid representation one can derive the magnetic
field HðrÞ; and hence the magnetic induction, BðrÞ; as described in Ref. [2]. As an example, the magnetic
induction field lines for two different magnetization directions are shown in Fig. 4(b) and (c): in (b), the
magnetization is parallel to the cylinder axis, whereas in (c), the magnetization is tilted 15� away from the
cylinder axis.
5. The demagnetization energy for a finite cylinder

For a cylindrical disk with radius R and thickness t ¼ 2d; the shape amplitude is [4]

4pR

k>kz

J1ðk>RÞsinðdkzÞ; ð57Þ

with k> ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
in the plane of the disk and the coordinate origin is taken at the center of the disk.

Therefore, the demagnetization energy is given by the following integral:

Em ¼
m0M2

0R2

p

Z
d3k

J1ðk>RÞ2

ðk2
> þ k2

z Þk
2
>k2

z

sin2ðdkzÞð #m � kÞ2: ð58Þ

For a generic unit magnetization vector ðmx;my;mzÞ; the scalar product k � #m is written as

ðk � #mÞ2 ¼ ðmxkx þ myky þ mzkzÞ
2

¼ ðaþ mzkzÞ
2 ¼ a2 þ 2amzkz þ m2

zk2
z ; ð59Þ

where a � mxkx þ myky is introduced for convenience. The integral is then

Em ¼
m0M2

0R2

p

Z
N

0

dk>
J1ðk>RÞ2

k>

Z 2p

0

dy
Z þN

�N

dkz

1

k2
> þ k2

z

sin2ðdkzÞ
k2

z

ðaþ mzkzÞ
2: ð60Þ

We first perform the integral along kz: Considering that the integral containing the 2amzkz term of Eq. (18)
is odd and hence vanishes, we haveZ þN

�N

dkz

1

k2
> þ k2

z

sin2ðdkzÞ
k2

z

ða2 þ m2
zk2

z Þ ¼
pa2

2k3
>
ðk>t � 1þ e�k>tÞ þ

pm2
z

2k>
ð1� e�k>tÞ: ð61Þ

We may note that the only angular dependence is in a; therefore the integration on y givesZ 2p

0

dya2 ¼ k2
>

Z 2p

0

dyðm2
xcos

2 yþ m2
ysin

2 yþ mxmysin 2yÞ

¼ pk2
>ðm2

x þ m2
yÞ ¼ pk2

>ð1� m2
zÞ; ð62Þ

and hence Eq. (61) becomes

p2ð1� m2
zÞ

2k>
ðk>t � 1þ e�k>tÞ þ

2p2m2
z

2k>
ð1� e�k>tÞ; ð63Þ

or, rearranging the terms

p2

2k>
½ðk>t � 1þ e�k>tÞ � m2

zðk>t � 3þ 3e�k>tÞ	: ð64Þ
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We are then left with the following integral:

Em ¼
pm0M2

0R2

2

Z
N

0

dk>
J1ðk>RÞ2

k2
>

½ðk>t � 1þ e�>tÞ � m2
zðk>t � 3þ 3e�k>tÞ	; ð65Þ

which gives finally

Em ¼
m0M2

0R2

12
8Rð3m2

z � 1Þ þ 6ptm2
z � 3ptð3m2

z � 1Þ2F1 �
1

2
;
1

2
; 2;�

4R2

t2

� �� �
ð66Þ

where the 2F1ða; b; c; zÞ function is a hypergeometric function. In terms of the t ¼ t=2R ratio, and
introducing a different hypergeometric function from the following equality:

2F1 �
1

2
;
1

2
; 2;�

1

t2

� �
¼

1

t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
2F1 �

1

2
;
3

2
; 2;

1

1þ t2

� �
ð67Þ

we arrive at

Em ¼
m0M2

0R3

6
4ð3m2

z � 1Þ þ 6ptm2
z � 3p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
ð3m2

z � 1Þ2F1 �
1

2
;
3

2
; 2;

1

1þ t2

� �� �
ð68Þ

We can normalize the entire energy expression by introducing the particle volume V and defining:

E0
m �

Em

m0M2
0V

¼
1

2
m2

z þ
3m2

z � 1

t
1

3p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
4 2

F1 �
1

2
;
3

2
; 2;

1

1þ t2

� �" #
ð69Þ
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Fig. 5. Reduced energy E0
m as a function of the aspect ratio t and the azimuthal angle y for the uniformly magnetized cylinder. The

saddle surface is centered at the location ð0:9065; 35:26�Þ; where E0
m ¼ 1

6
:
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This function becomes a constant (E0
m ¼ 1=6; independent of t) for m2

z ¼ 1=3; which corresponds to an
angle of 35.26� for y: However, this is not a stable configuration, as the energy reaches always an absolute
minimum or maximum either for mz=0 (in plane magnetization) or mz=1 (vertical magnetization). The
transition between the two states is reached for an aspect ratio t ¼ 0:9065; showing that for a flat disk shape
(t5R) the in-plane magnetization is favorable, while for a rod shape (tbR) the vertical magnetization is
favorable. The energy E0

m is shown as a function of the aspect ratio t and the azimuthal angle y in Fig. 5.
Along the straight horizontal and vertical straight lines we have E0

m ¼ 1
6
:

6. The magnetometric demagnetization tensor for a finite cylinder

Combining Eqs. (8) and (57) we have for the magnetometric demagnetization tensor

/NSij ¼
2R2

pV

Z
d3k

J2
1 ðk>RÞsin2ðdkzÞ
k2
>k2

z ðk
2
> þ k2

z Þ
kikj : ð70Þ

Solving for the angular integrals one can show that only the diagonal elements of the volume averaged
tensor can be non-zero:

/NS11

/NS22

/NS33

0
B@

1
CA ¼

2R2

V

Z
N

0

dk>

k>

k2
>

k2
>

2

0
B@

1
CAJ2

1 ðk>RÞ
Z þN

�N

dkz

sin2ðdkzÞ
k2

z ðk
2
> þ k2

z Þ

1

1

k2
z

0
B@

1
CA: ð71Þ

The integrals over kz can be solved by means of equations ½3:826:1	 and ½3:824:1	 in Ref. [10]. UsingZ
N

0

dk>
J2
1 ðk>RÞ

k>
¼

1

2
andZ

N

0

dk>
J2
1 ðk>RÞ

k2
>

¼
4

3p
; ð72Þ

we can rewrite the diagonal elements of the volume averaged tensor as:

/NSii ¼

1

2
1

2

0

0
BBBB@

1
CCCCA�

1

2t

1

1

�2

0
B@

1
CA 4

3p
�

Z
N

0

dK
J2
1 ðKÞ
K2

e�2tK

� �
; ð73Þ

where we have introduced dimensionless coordinates. The integral over K is again of the Lipschitz–Hankel
type [12] and we find for the magnetometric demagnetization tensor of the uniformly magnetized finite
cylinder:

/NSii ¼

1

2
1

2

0

0
BBBB@

1
CCCCA�

1

2t

1

1

�2

0
B@

1
CA 4

3p
�

4

3p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
ðt2KðkÞ þ ð1� t2ÞEðkÞÞ þ t

� �
; ð74Þ

with

k2 ¼
1

1þ t2
: ð75Þ
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Fig. 6. Volumetric demagnetization factors for the finite cylinder as a function of the aspect ratio t (logarithmic scale). The factors are

equal to 1
3
when t ¼ 0:9065:
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The limiting cases are easily derived from this expression: for t-N; the second part of Eq. (74) vanishes,
so that the magnetometric demagnetization factors are equal to ð1

2
; 1
2
; 0Þ: For t-0 the term between square

brackets in Eq. (74) approaches t; so that the demagnetization factors are ð0; 0; 1Þ: These cases correspond
to the infinite cylinder and the infinite plane, respectively. Eq. (74) is in agreement with the results of Joseph
et al. [15]; the magnetometric demagnetization factors for the finite cylinder are shown graphically in Fig. 6.
7. Applications

The formalism developed for the uniformly magnetized cylinder can be applied to study the magnetic
field of a solenoid. In fact, a uniform magnetization over a cylindrical magnet is equivalent to a current
flowing on the surface of the cylinder. We will now show how to extract some useful information which is
not easily accessible by means of the standard real-space approach.

From Eq. (2) we have that the z component of the H-field can be written explicitly as

Hzðr; zÞ ¼ �
M0R

p

Z
kzdk dkz

k2 þ k2
z

J1ðkRÞJ0ðkrÞsinðdkzÞeizkz : ð76Þ

As a first easy result, we calculate the field at the center of the solenoid. For r ¼ 0 and z ¼ 0; after the
integration in kz; we obtain

Hzð0; 0Þ ¼ �M0

Z
dKJ1ðKÞe�tK ; ð77Þ

which, considering that within the solenoid the M-field is also present, results in

Bzð0; 0Þ ¼ B0
tffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p : ð78Þ

Note that, in the limit t-N; the field is B0; which is the field of an infinite solenoid. On the other hand, for
t-0; the field goes to zero, consistent with the results shown for the volume averaged demagnetizing
tensor. For t ¼ 1 we have B0=2:
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With a very similar argument, we may calculate the field along the solenoid axis, obtaining an analytical
expression, which we will not report here. Instead, we give the expression for the field at the upper surface
of the solenoid, which is

Bzð0; dÞ ¼ B0
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4t2
p ; ð79Þ

which is 0 for t ¼ 0 and B0=2 for t-N:
It is also interesting to evaluate the external field of the solenoid. In fact, in order to evaluate to what

extent we can consider a solenoid as ‘‘ideal’’, it is necessary to have information about the field just outside
the lateral surface. We can evaluate directly from Eq. (76) the field at r ¼ R and z ¼ 0

HzðR; 0Þ ¼ � M0

Z
dKJ1ðKÞJ0ðKÞe�tK

¼ �
M0

2
1�

2

p
K �

4

t2

� �� �
; ð80Þ

where KðxÞ is the K-elliptic function [10]. The field goes from �M0=2 for t-0; to zero for an infinite
solenoid. Depending on the degree of ideality we desire for our solenoid, we can exploit the previous result
to determine an acceptable aspect ratio. For instance, taking the value t ¼ 20; we have an external field just
outside the surface of the order of 0:1% of M0; which can be considered in a good approximation as ideal.

Another simple calculation is the current loop. Taking the limit for d-0 in Eq. (76), we can calculate the
field along the z-axis from

Hzð0; zÞ ¼ �
M0Rd

p

Z
k2

zdkdkz

k2 þ k2
z

J1ðkRÞeizkz ; ð81Þ

which, after the integration in kz yields

Hzð0; zÞ ¼
M0Rt

2

Z
kdkJ1ðkRÞe�kjzj

¼
M0R

2t

2

1

ðz2 þ R2Þ3=2
: ð82Þ

Considering the relationship between magnetic moment and current in a loop m ¼ M0V ¼ IA; where A is
the area of the loops, we can write M0At ¼ IA or M0t ¼ I ; thus obtaining the Biot–Savart law

Bzð0; zÞ ¼
m0I
2

R2

ðz2 þ R2Þ3=2
: ð83Þ

As a final remark, it can be interesting to verify that, independent of the aspect ratio of the cylinder, the
total flux of the H-field over the z ¼ 0 plane is always equal (with opposite sign) to the flux enclosed in the
solenoid. Writing Eq. (21) in cartesian coordinates, we obtain for z ¼ 0:

fH ¼
Z

dxdyHzðx; y; zÞ

¼ �
M0R

2p2

Z
kzd

3k

k>k2
J1ðk>RÞsinðdkzÞ

Z
dx dy eixkxeiyky ; ð84Þ

which, considering the definition of the Dirac-d distribution, and the limit J1ðk>RÞ=k> ¼ R=2 for k>-0;
can be evaluated easily as

fH ¼ �M0R
2

Z
dkz

kz

sinðdkzÞ ¼ �M0pR2; ð85Þ

which is exactly the solenoid magnetization multiplied by its cross section, as expected.
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8. Conclusions

We have shown that the Fourier space shape amplitude formalism can be applied to the computation of
the demagnetization tensor field of uniformly magnetized particles of arbitrary shape, and as an example we
have derived the complete DTF for the cylinder with arbitrary aspect ratio. In addition, the magnetostatic
energy and the volumetric demagnetization factors were derived in closed form. We have applied the
formalism also to the computation of the magnetic field at various special points around a solenoid. An
overview of numerical procedures which can be used to compute the DTF for more complex shapes will be
presented in Part II of this paper [3].
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